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Abstract—This paper is an analysis of the conditions to be satisfied in order to avoid buckling
during the growth of a silicon ribbon that is being slowly pulled from the melt. A viscoplastic
constitutive equation with a dislocation density effect is used to model the material behavior. The
critical thicknesses and the corresponding deflection shapes are calculated by the finite element
method for the cantilever boundary conditions. The value of the parameter which controls the
speed of the lateral deflection is computed by using Galerkin's method. It is demonstrated that,
due to the effect of viscoplasticity, some deflection shapes increase in magnitude with time and
other shapes damp out.

1. INTRODUCTION

One approach to lowering the cost of solar power involves producing thin sheets of high
quality silicon ribbon (very thin plate) directly from the molten state. These sheets are
subsequently processed into photovoltaic cells. In order to make the economics of silicon
favorable for photovoltaics, it is necessary to have high productivity of the ribbon material.
This implies that wide sheets must be produced under conditions which require rapid
cooling at the solid-liquid interface. These conditions produce very non-uniform thermal
fields which generate large thermal stresses. These large thermal stresses can cause buckling
of the wide thin silicon ribbon[1-4].

In silicon ribbon growing processes, buckling phenomena are the most severe limitation
to the growth of good quality wider ribbon. Both the magnitude of the thermal stresses
and the stiffness of the ribbon depend on the value of the width. Simply said, processes
which produce good ribbon that is 2cm in width do not yield the same quality product
that is 10 cm wide. Industrial experience is that the type of buckling that develops depends
on the details of the process used to grow the ribbon. Some processes have buckles which
are of long wavelengths[4] while others have very short wavelength[2] permanent
deformations. Duncan et al.[1], Kalejs et al.[2], Gurtler[5] and Dillon and De Angelis(6]
have contributed to the elastic buckling analysis of this problem. However it is clear that
the stresses in part of the ribbon are far above the local yield stress and this raises questions
about the applicability of the elastic analysis.

Basic work on the material response functions for silicon was done by Haasen[7, 8]
and Sumino and co-workers[9,10]. They found that silicon is a viscoplastic material at
constant temperature and has an exp(— Q/kT’) type correlation between its responses at
different temperatures. They also found that the response depended on the dislocation
density. The efficiency of solar cells as power generators is also related to their dislocation
density[11,12]. It is ideal when the maximum dislocation density can be kept below 10*
cm~2[1,3]. This is, of course, a very different parameter domain than the 10° cm~2 which
usually exists in metals. This low dislocation density forces us to simultaneously make
calculations on the dislocation density spatial distributions just as we predict the stress
distributions[13].

This analysis parallels that of Tvergaard[14], in several important details, who
considered the creep buckling of simply supported plates subjected to constant axial
stresses in one direction. Our analysis differs from that of Tvergaard in the material
constitutive relation that is used and the nature of the stresses involved. The in-plane
stresses considered herein are due to the non-uniform thermal profile and therefore all
components (i.c. 65, 63, and o3 exist, vary in space and must be retained[15,16]. The
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ribbon is considered to be very thin and the strain is assumed linear through the thickness
and there is no coupling between the in-plane forces and bending so that the in-plane
forces do not change during buckling. A finite element method is used to calculate the
critical thicknesses and the corresponding buckling shapes, and Galerkin's method is used
to determine how the amplitudes of the lateral deflection grow in time[13].

2. ANALYSIS

Consider a plate having a small initial imperfection w°, the governing differential
equation is[15-17]

*M,, M,

2
= —PJx,y) - ho®.

PW g0 W
™ 0x? 2hay dxdy

o 0w
)yay2'

2
aM‘+2

ox? 0xdy + or? —ho

(1)

The rectangular Cartesian coordinate system (x, y) that is used is shown in Fig. 1. The in-
plane stresses from the prebuckling state are denoted o9, 67, and 69, and h is the plate
thickness; M,, M,, and M, are the moments in the buckling state. The total lateral
deflection of the plate is w and P,(x, y) is the lateral load intensity that is applied to the
plate.

The material response is assumed to be isotropic and thermal viscoplastic such

that[13]
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where i, j, k = 1, 2, 3, 6;; are the components of the stress rate tensor, £;; are the components
of the strain rate tensor, T is the rate of change of temperature, &/ are components of the
plastic strain rate tensor, N,, is the mobile dislocation density, J;; is the Kronecker delta
function, a is the thermal expansion coefficient, v is Poisson’s ratio, and E is Young’s
modulus which is a function of temperature and is givenas 1.7 x 10! — 2.771 x 10* x (T")*
Pa, where T’ is the absolute temperature[18]. The plastic strain rates in eqn (2) are written
as[13, 14]

....... —_ -

Deformed
configuration

Fig. 1. The typical plate element in its initial and deformed configuration.
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and the rate of dislocation density change is[13]
Ny = KNpkoe *T(JJ, — DN P*" @)

where S;; are deviatoric components of the stress tensor defined by S;; = 0;; — gud;;/3. The
viscosity f in eqn (3) is[13]

f = Ngkobe @*T'((JJ, — D\/N,,,)P-\/—{,— 5)
2

if \/J; < D\/Ny, the values of f and N,, are zero, and where
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t is time and t is the “applied shear stress”; G is the shear modulus; b is the magnitude of
Burger’s vector which for silicon is 3.8 x 10~!%m; N, is the density of mobile dislocation;
B is a parameter characterizing the interaction between dislocations and is 3.3; Q is the
Peierls energy and is 2.17 eV; k is Boltzman’s constant and is equal t0 8.617 x 107 3eVK~1;
B, is mobility and is taken as 4.3 x 10*m ~!; K, p and r are material constants which are
taken as 3.1 x 10"*mN~!, 1.1 and 1.0, respectively; and 1, is assumed to be equal to 10’
Nm~2. The parameter J, = (S;;5;)/2 is the second invariant of the deviatoric stress tensor
and D,/N,, is called the back stress. The form of eqns (4) and (5), as well as the numerical
values for the constants therein are based on the work of Haasen[7,8] and Sumino and
co-workers[9,10] in the one-dimensional test. Silicon is also anisotropic in its elastic
response. We assume isotropy in order to evaluate the effect of the viscoplastic response
on buckling.
We now find it convenient to write the total lateral deflection w as

w=w" +w?+w ©)

where superscripts e and vp represent elastic and plastic behavior, respectively, and w° is
the initial lateral imperfection. The strains are also split into in-plane components plus
bending terms and written as

w* + w'P)

0
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(7a)

where ¢} is the strain in the middle plane of the plate and z is the distance from the middle
plane. By making the time derivative of eqn (7a), we have

(W + w'P)

o — <0
= T I g ax,

(7b)

where the dot on the top of each variable is the rate of its variable. The basic definition
/2
MU= J‘. UUZdZ (8)
~h/2

relates the stresses o;; to the moments.
When elastic strains are considered separately (i.e. plastic strain rates are zero), the
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moment tensor can be expressed in terms of the elastic lateral deflection w® alone according
to eqn (7a). They are

M, = -D,(%z)%: + v%%;) ©)
M, = -D/(1 - v)%
where
e

When the elastic strain rates are zero, the moments acting on the plates are expressed
in terms of the viscoplastic lateral deflection rate w*P alone according to eqn (7b). They
are
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where the viscosity f, as defined in eqn (5), is a complex function of x and y but is “known”
in the buckling analysis[13, 19], and in particular is assumed to be independent of the
thickness position. One can interpret f being independent of z to be a Taylor series
expansion where the first term is all that is retained.

Since the definition of eqn (8) is true regardless of the material properties, under the
same applied loading circumstances, the relationship between the elastic lateral deflection
w® and the viscoplastic lateral deflection rate w'P can be written as

D,,
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For small plastic deformations, there is no volume change and Poisson’s ratio v is assumed
as 0.5 in the elastic range as well. Hence eqn (11) becomes
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This is one of the key ideas in Tvergaard’s analysis. We then use eqn (1), where the lateral
load intensity P,(x,y) is assumed zero during the growth of the ribbon, and egn (7) to
produce
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Since we assume that the in-plane forces do not change during buckling, the time
derivative of the in-plane stresses vanishes. The initial imperfection w° is a known deflected
shape and does not change with time, so that its time derivative also vanishes. By taking
the time derivative of both sides of eqn (13), we obtain

D.cu.e o 20+ W) o MW+ W) 8200, + W)
7 V4w = 02, PR 209, 3x3y "oy (14)
This eliminates w® from eqn (13). By substituting eqn (12) into eqn (14), we obtain
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Equation (15) is the governing equation of buckling for a viscoplastic plate, but due
to eqn (12), it involves only the elastic deflection w® as the dependent variable. This does
not mean that the plate is being considered as an elastic one. Equation (15) is a typical
creep buckling type equation for plates whose solution can be assumed in the separable
form as

wix, 3, 1) = g(O)W(x, y) (16)

where W(x, y) is the deflected shape of the plates and g(t) is the magnitude of the deflected
shape.

2.1. Analysis with the prescribed deflection shape (simply supported plate)

If the deflected shape of the plates is approximately known before the buckling analysis
begins, the solution procedures are similar to those of Tvergaard[14] as illustrated in the
appendix for our material.

2.2. Analysis without the prescribed deflection shape

If the approximate buckling mode shape for creep buckling is not available beforehand,
the Tvergaard solution technique must be somewhat modified. By substituting eqn (16)
into eqn (15), we obtain
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where A% is the separation parameter. From eqn (17), two differential equations are
obtained. One is for the time-dependent amplitude problem and the other is the spatial
problem. They are

£(t)— A’() =0 (18)
and
oW 2fE) ( o W W, azw)
D.V*W <1+ 37 ) o + 2055 + o 5 0. (19)

When the value of f vanishes, eqn (19) becomes the governing equation of elastic plate
buckling. Hence, the viscoplastic buckling shape is governed by the same spatial equation
as the elastic buckling one but where the elastic in-plane forces have to be replaced by

2fE
(1 ' 3{12>haij. 20)

Of course the plate made of inelastic material also has deflections which grow with time
according to eqn (18). The solution of eqn (18) is

glt) = g°e*™ 1)

where g° is the amplitude of the initial plate imperfection w® whose deflection shape is
W(x, y). The value of A2 controls the speed of the lateral deflection of plates. When the
value of A2 is equal to infinity, elastic buckling occurs at once. A large value of 12 means
that the lateral deflection of plates grow rapidly. When 42 is negative, the initial imperfection
of plates will damp out with time.
If one assumes that fE/A? « 1, eqn (19) reduces to
o O2W aw

eV‘W 60— + 20°
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0
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Equation (22) is the case of elastic plate buckling, except that the in-plane stresses are the
viscoplastic ones and therefore this equation can be solved by standard finite element
methods[13,20-23] in order to calculate the critical thicknesses (i.e. \/(1/cigenvalue)) and
the corresponding mode shapes. In all thermal buckling problems discussed herein, the in-
plane stresses of; are calculated from the prebuckling state[13,19], where the material is
considered to be viscoplastic and governed by eqns (2)-(5).

Let the critical thicknesses found from eqn (22) be designated as h, and the
corresponding buckling mode shapes be W*(x, y), then eqn (22) becomes

W 0 OPW* @ W“

D¥
—,—;V‘W‘ = a2, et 202, 2%3y + a?, 5 (23)

By substituting eqn (23) into eqn (19), we obtain

g_,4,_( 2fE)D" ._
VW 1+37 hv‘w 0. 24

Since the values of f and E vary throughout the plane of the plate, Galerkin's method
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Fig. 2. Dimensions of the ribbon and the schematic thermal profile along the growth (x) direction.

can be used to evaluate the value of A? for the entire plate deflecting as a unit[13]. By
multiplying eqn (24) by W*(x, y) and integrating the result throughout the plane of the
plate, we obtain

st
2 _ e -
Yepimn (25)

where

*2fE
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and h is the actual plate thickness (which is larger than h,,).

In formulating the above problem we linearize the plastic strain variation in the z-
direction; f is calculated from the stresses and dislocation densities in the z = 0 plane and
is assumed independent of z. The result is eqn (21). Had the z dependence in f been
retained, the analogue of eqn (21) would predict infinite deflections in a finite time. However,
our interest is in avoiding large deflections and therefore the assumption of f being
independent of z is adequate and much simpler to use. In order to evaluate the integrals
in eqn (25), we use W*(x, y) as given by the FEM solution of eqn (23) as the approximate
deflection shape in the Galerkin procedure.

3. NUMERICAL RESULTS FOR CANTILEVER SILICON RIBBON

In growing silicon ribbon, a fixed boundary is assumed in bending along the far end
(x = L) of the ribbon and the other boundaries are all traction free as shown in Fig. 2.
Therefore, a creep buckling analysis of the cantilever rectangular plates will be used as the
model of growing ribbon. A finite element program was developed for the IBM 3083
computer. A 16 degrees of freedom Hermitian-conforming rectangular clement is used.
There are four nodes in each element and four degrees of freedom (i.e. w, dw/dx, dw/dy
and d*w/dx0y) at each node[13,20,21]. Therefore, the values of w, dw/dx, dw/dy and
dw?/dx0dy are zero along the fixed edge and arbitrary along the free edge[13].

A simply supported elastic plate which is subjected to an axial compression force in
one direction was used to test the accuracy of the program. When a quarter plate (because
of symmetry) is divided into four elements, the difference between the exact and finite
element values of the critical load is 0.6% when using single precision numerics in the
computer. When the elastic quarter plate is divided into 16 elements, the difference in the
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buckling load is about 0.1%[13]. If more elements (say more than 50 elements) are used,
double precision arithmetic is required in the computer in order to reduce roundoff errors.
The plate is divided into 20 x 20 elements in this paper. This results in a large system of
linear algebraic equations where many of the low eigenvalues (critical thicknesses) and the
corresponding eigenvectors (buckling mode shapes) for eqn (22) are calculated by the
computer. Since some eigenvalues are negative, the number of eigenvalues which are
specified to be solved for in the computer calculation must be larger than the number of
negative eigenvalues in eqn (22)[13]. We frequently find it necessary to calculate 30
eigenvalues. After the critical thicknesses and the corresponding mode shapes W(x, y) are
obtained, the actual plate thickness h, which is taken to be larger than the critical thickness
he, of the first positive buckling mode (the lowest positive eigenvalue), is chosen. By
substituting these values into eqn (25), the values of A* are computed. The negative
eigenvalues means that the plate will buckle when the in-plane stresses have the same
spatial distribution but have a change in sign. Since this change in sign cannot occur for
the prescribed thermal fields, there is no physical content in these values.

The in-plane stresses used here are obtained from the viscoplastic plane stress
analysis[13]. The in-plane thermal stresses o9, oJ, and o9, in the prebuckling state are
calculated before attempting the buckling analysis. The equilibrium equation for the in-
plane stresses in a thin plate lying in the x—y plane is used in the form[13]

2.0 2.0
0%0xx gy,

oxt 9y 0 (26)
and the compatibility equation becomes
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where &5, &5, and &, are the plastic strain rates in the prebuckling state, and V is the
pull speed of the silicon ribbon and is taken to be 3cmmin~! in this analysis. Equations
(26)-(28), plus eqn (5), and the traction-free boundary conditions of the plate are solved
iteratively to yield 6%, 63, 69, and N, as functions of space (x, y). It is found that there
is a critical width for which the iteration process that is used converges. The stresses in
wide ribbons become large which creates a high dislocation density and ultimately the
plastic strain rates become too large.

Typical results for a9,(x,y) and N(x,y) are shown in Figs 3 and 4. Details of the
solutions of eqns (26)—(28) and additional results are contained in recent publications{13, 19].

A quadratic and an exponential thermal profile will be used as examples of thermal
fields that can be analyzed. The creep buckling analysis and results will be discussed below
for these profiles,

3.1. The quadratic thermal profile

Consider now the case where the ribbon length is 8 cm, the initial dislocation density
is 0.5cm™2 and the pull speed is 3cmmin~'. This ribbon is subjected to the quadratic
thermal profile given by T(x) = 1412 — 110.74x + 3.5x2°C. The in-plane stresses and the
values of viscosity f are obtained by solving eqns (26)-(28)[13, 19]. The specific value of
A% is calculated by assuming (arbitrarily) the actual plate thickness to be i = 1.1h,,, where
h., is the thickness of the first positive buckling mode. The critical thickness and the value
of 4 for each corresponding buckling mode are shown in Tables 1-3 for plate widths of
8, 6 and 4cm. Results (critical thicknesses and 4%) obtained for an 8 cm wide ribbon are
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Fig. 3. The elastic and viscoplastic stresses o,, along the ribbon centerline for T = 1440¢ %% for
several plate widths. Solid lines represent stresses in a plastic material while the dashed lines are
for an elastic substance. Lines 1, 2 and 3 are for plate widths of 7.5, 7 and 6 cm, respectively. Dashed
line 4 is for a 4cm wide plate where the stresses are the same in an elastic and viscoplastic plate.
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Fig. 4. The dislocation density contour plate for an § x 7.5cm plate havin% an initial dislocation
density of 0.5cm ™2, The thermal profile is T{x) = 1440 ¢~ %%,

given in Table 1. Clearly, the second mode shape in Table 1 has the maximum value of
A% (or lateral growing speed). The mode shapes for the first and second buckling modes
for a ribbon width of 8 cm are shown in Figs 5 and 6. Results for a 6cm wide ribbon are
give in Table 2. The second mode again has the maximum value of 42. Table 3 contains
results for a 4cm wide ribbon. The buckling mode with the fastest lateral growing speed
for the 4 cm wide ribbon is the first one. The first buckling mode for this profile (and these
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Table 1. The critical thicknesses and values of
4? for several modes of an 8 x 8cm plate
subjected to a T(x) = 1412 — 110.74x + 3.5x?
(°C). The initial dislocation density is 0.5 cm ™2
and the actual thickness h used to calculate
A% was 1.1 h,, (0.288 mm) of the first mode. The
fastest growing mode is the second one

Mode h.{mm) A
1 0.262 0.0452
2 0.258 0.0868
3 0.203 0.000175
4 0.194 —0.00481
5 0.163 0.00364
6 0.156 0.00627
7 0.137 0.000786
8 0.131 —0.000435
9 0.118 0.00103
10 0.113 0.00163
11 0.103 0.000429
12 0.100 0.000196

Table 2. The critical thicknesses and values of
4% for several modes of an 8 x 6cm plate
subjected to a Tx)= 1412 — 110.74x +
3.5x? (°C). The initial dislocation density is
0.5cm™? and the actual thickness 4 used to
calculate A% was 1.1k, (0.217 mm) of the first
mode. The fastest growing mode is the second

one
Mode he, (mm) A2(s™Y)
1 0.198 0.00143
2 0.195 0.00238
3 0.154 0.0000212
4 0.148 —0.000117
5 0.126 0.000135
6 0.119 0.000210
7 0.105 0.0000319
8 0.100 —0,00000653
9 0.0904 0.0000443
10 0.0873 0.0000631
11 0.0796 0.0000240
12 0.0767 0.0000126

geometries) is twisting (see Fig. 5). The maximum lateral growing speed for an 8cm wide
ribbon is larger than that of a 6cm wide ribbon which is in turn larger than that of a 4cm
wide ribbon with h = 1.1 h,.

3.2. The exponential thermal profile example

Consider now the case of a plate of the same ribbon length (8 cm), same initial
dislocation density (0.5cm™?) and same pull speed (3cmmin~!) as used in the parabolic
profile, but let the ribbon be subjected to the exponential thermal profile of the form
T(x) = 1440 exp (—0.08x)°C. The values of A2 are again calculated by assuming h = 1.1h,,.
The critical thicknesses and the values of A* are contained in Tables 4-6 for ribbon widths
of 7.5, 6 and 4 cm, respectively. Clearly, the second mode (bending) has the fastest lateral
growing speed for the 7.5cm wide ribbon. Results for a 6cm wide ribbon are contained
in Table 5. The second mode (bending + curling) has the maximum lateral growing speed.
Table 6 contains results obtained for a 4 cm wide ribbon. However, in this case the buckling
mode with the fastest lateral speed is the first one (twisting).
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Table 3. The critical thicknesses and values of
A2 for several modes of an 8 x 4cm plate
subjected to a T(x)= 1412 —110.74x +
3.5x2 (°C). The initia} dislocation density is
0.5cm ™2 and the actual thickness h used to
calculate A was 1.1 h, (0.128 mm). The fastest
growing mode is the first one

Mode he (mm) Lol L)
1 0.117 0.000353
2 0.108 0.000221
3 00914 0.00000618
4 0.0881 —0.00000812
5 00775 0.0000275
6 0.0735 0.0000419
7 0.0651 0.00000934
8 0.0632 —0.000000506
9 00572 0.0000115
10 00552 0.0000169
1 0.0506 0.00000701
12 0.0492 0.00000271

Fig. 5. The first buckling mode shape for an 8 x 8cm plate subjected to the parabolic thermal
profile T(x) = 1412 — 110.74x + 3.5x(°C). The critical thickness is 0.262 mm. The initia! dislocation
density is 0.5cm ™2,

4. DISCUSSIONS

The parameter used herein to describe the creep buckling resistance of plates is the
thickness. This is a different parameter than is usually used in stability analyses of plates.
The thickness is used here because T(x) is fixedt and cannot be changed in magnitude and
the in-plane thermal stresses in plates change with the width. The thermal stresses are
obtained from the prebuckling state (plane stress problem), and then substituted into the
buckling equation of plates to calculate the critical thickness and the corresponding
buckling shape of plates.

It is found that in the case of thermal creep buckling of thin viscoplastic plates that
the lowest mode does not always grow fastest. In fact it can damp out. By following
Tvergaard’s method[14] and using the Haasen—Sumino model, the thermal creep buckling
equation can be derived in terms of the elastic lateral deflection w*® and its rate w*. This

1 In some industrial cases the thermal profile T{x) may depend on the ribbon thickness. We do not consider
this variation in our calculations.
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Fig. 6. The second buckling mode shape for the same case used in Fig. 5. The critical thickness is
0.258 mm.

Table 4. The critical thicknesses and values of

A% for several modes of an 8 x 7.5cm plate

subjected to a T{(x) = 1440¢~%9%* (>C), The

initia] dislocation density is 0.5cm ™2 and the

actual plate thickness h used to calculate A2

was 1.1h, (0.254mm). The fastest growing
mode is the second one

Mode h,, (mm) A7
1 0.231 0.0615
2 0.227 0.109
3 0.178 —0.0000841
4 0.172 —0.00621
5 0.144 0.00478
6 0.139 0.00777
7 0.121 0.00103
8 0.116 —0.000398
9 0.104 0.00137
10 0.101 0.00209
11 0.0922 0.000556
12 0.0892 0.000323

equation is not limited to elastic plate buckling but rather applies to a plate simuitaneously
having both elastic and viscoplastic behavior. In this analysis, the value of 4? for silicon
ribbon is dependent on the values of the viscosity f and the critical thickness and the
corresponding buckling mode shape. The critical thickness and corresponding mode shape
are affected by the thermal profile and the in-plane dimensions of the ribbon. In this paper,
several deflection shapes and values of 4% are reported. The lowest mode does not
necessarily have the largest value of A%. The actual ribbon thickness has to be larger than
the critical thickness of the lowest mode that is calculated from eqn (22), otherwise the
value of A% in eqgn (17) becomes infinite and the plate will have a bifurcation type of
buckling. Since the wider ribbon produces larger values of the in-plane stresses for the
same thermal profile and also has a smaller resistance to buckling, wider ribbon generally
has a greater critical thickness and a larger value of 1%. Especially, when the width of the
plate approaches the critical width mentioned above in value, a further small increment
in width will result in a large change in the value of 4 and hence the speed of the lateral
deflection. Since the ribbon thickness affects the speed of the lateral deflection, if a larger



Thermal viscoplastic buckling during the growth of silicon ribbon 399

Table 5. The critical thicknesses and values of

A2 for several modes of an 8 x 6cm plate

subjected to a T(x) = 1440¢%-%% (°C). The

initial dislocation density is 0.5cm ™2 and the

actual plate thickness h used to calculate A2

was L.1h, (0216 mm). The fastest growing
mode is the second one

Mode h,, (mm) AiTY
1 0.196 0.00372
2 0.193 0.00599
3 0.152 0.0000110
4 0.146 —0.000338
5 0.124 0.000316
6 0.118 0.000486
7 0.104 0.0000664
8 0.100 —0.0000176
9 0.0894 0.0000995
10 0.0865 0.000141
11 0.0789 0.0000507
12 0.0761 0.0000263

Tabie 6. The critical thicknesses and values of

A? for several modes of an 8 x 4cm plate

subjected to a T(x) = 1440 ¢~ %98 (°C), The

initial dislocation density is 0.5cm~?2 and the

actual plate thickness h used to calculate 42

was 1.1k, (0.131 mm). The fastest growing
mode is the first one

Mode h, (mm) A
1 0.119 0.000602
2 0.108 0.000364
3 0.0905 0.000004%9
4 0.0876 —0.0000254
5 0.0768 0.0000390
6 0.0730 0.0000697
7 0.0645 0.0000136
8 0.0628 —0.00000634
9 0.0567 0.0000174
10 0.0549 0.0000273
11 0.0502 0.0000103
12 0.0489 0.00000291

thickness is used the speed will decrease. We found from calculations that the elastic critical
thickness of ribbons is close to the viscoplastic critical thickness. For example, the critical
thickness of the elastic ribbon is 0.251 mm while it is 0.231 mm for the viscoplastic ribbon
in the case of an 8 x 7.5 cm ribbon subjected to the exponential thermal profile. Therefore,
if we want to prevent all possibilities of elastic buckling and neglect the speed of the lateral
deflection of creep buckling, the elastic buckling analysis can be used. A ribbon thickness
which is larger than the calculated elastic critical thickness is suggested for use in the
growth of silicon ribbon.

We note that reports in the silicon ribbon literature show many examples of long
wavelength buckling mode shapes[4] of the type shown in Figs 5 and 6. We also note that
examples of short wavelength buckling are also reported[2]. We interpret the latter as
examples of cases where 12 < O for the lower modes but not for some of the higher ones.
They occur in a more complex thermal profile than is used here.

5. CONCLUSIONS

(1) A governing equation of thermal viscoplastic buckling of plates based on the
Haasen—-Sumino material model was derived.

(2) The governing equation is separated into two differential equations. One equation
is related to the lateral deflection shape of plates, and the other is related to the growing

SAS 23:3-E
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speed of the lateral deflection of plates.

(3) The critical thicknesses and the corresponding lateral deflection shapes were
calculated from the solutions of the governing equations. The lateral deflection speeds of
thermal creep buckling were also computed. A positive speed indicates that the lateral
deflection of the ribbon grows in time while a negative speed signifies that the lateral
deflection of the ribbon decreases in value with time.
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APPENDIX

Consider a simply supported rectangular plate with length a and width b. For a simply supported plate, the
deflections and the moments along the boundaries are zero, and the defiection shape can be assumed as

W(x,y) = sin(?—) sin (]%V.) (Al)

where i and j are positive integers.
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The values of the viscosity f are calculated from the prebuckling state. The initial imperfection w® is also
assumed to have the same shape as W(x, y) of eqn (Al). That is

w = g"W(x, y) (A2)

where g° is the magnitude of the initial imperfection. The solution of eqn (15) can now be written as
wt =gmssn(ﬁ)sm(!ﬂ’). (A3
a b
By substitution of eqn (A3) into eqn (15), it becomes
Feo (5] + 2JGT + (n(5) 0 (5)-
AE . o {irY . (inx\ . [jny
[ 3 g0 +g(:)][o,,(a):sm( 2 )sxn( B
2"»(4)(»)“"( a )°°’( b )* ’”(b)”"'( a )"“( b )] (A9
If the values of E, 63,, ¢2, and dislocation density in the plate are assumed to be constant and 0¥, to vanish, the
values of f are also constant and the term involving o2, in eqn (A4) vanishes. Therefore, sin functions in both

sides of eqn (Ad) can be cancelled. Then, by rearranging the coefficients of #(t) and g(t), and finally dividing both
sides by the coefficient of g(t), we have

&(t) — Bglr) = 0. (AS)
The value of B is determined by the value of £, E, 6%, and ¢f,. That is
Bl
B= B {A6)

where

and the solution of eqn (AS) becomes
8(t) = %™ ~ 1). (A7
From eqns (A6) and (A7), the value of the plate thickness h and the in-plane forces control the speed of creep
buckling. If the in-plane stresses o2, and o}, of eqn (A6) are tensile, the value of B is negative and the initial
imperfection w® of the plate will eventually damp out with time. On the other hand, if the in-plane forces are

compressive, the lateral deflection of the plate grows with time. By substituting the prescribed deflection shape
and the constant in-plane stresses o2, and o7, into the elastic buckling equation, the following equation is obtained:

Aokl

ERS,
1201 — vy

From cqn (A8), the critical thickness k., for the in-plane stresses o, and o7, is

MRV .
'Y o}J%
ﬂxx(a) + 6”(b)) 12(1 - vz)
. e X (A9)
a aJ\b b

By substituting eqn (A9) into eqn (A6), we obtain

where

i
DY =

K=
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2
o ofJR

B 0“(ﬂ> " ”(h> Ly —vi

LAY EAT) SNEA NI

a a/\b b
where h > h,, was implied during the derivation of eqn (A10). Therefore, when a piate is subjected to in-plane
compressive forces, the value of B is positive and the lateral deflection of the plate will grow with time according
to eqn (A7). If h is equal to h,,, the value of B becomes infinite and this means that bifurcation buckling occurs
at “zero” time. This also reveals that a larger value of h will cause the lateral deflection of the plates to grow
more slowly. From the above behavior of creep buckling of plates for a simple case, the behavior for more
complex problems can be betler undcrstood.

If the values of f, E, ¢2,,0%, and 9, are not constant and vary in space, Galerkin's method can be applied
to eqn (A4) to calculate the valuc of B. That is, let

B=

(A10)

(All)

where

Bl = f r ﬁ[ag,(i’f)z sin (E) sin ﬂ)
o Jo a a b

w=[(8] -5 - ()
f.r T2 = vz)s""(mx (”‘Ty)dxdy

o [[[a{)o(5)
()0
A {5 )

\_/

and



